Home > News > News List News Tag

low melting pointAt present, the main cooling technology is air cooling, heat pipe, water cooling and so on.Air cooling technology has limited thermal conductivity and can only be applied to low-power electronic products.The heat pipe is better than the air cooling, but there is the burning limit, and even the pipe rupture failure phenomenon;Due to evaporation, leakage and other problems in the process of operation, water-cooled cooling is easy to lead to device aging, and the requirements for liquid and flow pipe are also high.The radiator that liquid metal makes has the advantage that this traditional radiator cannot compare, that is collect efficient, compact, safe, quiet in an organic whole.It has good thermal conductivity and specific heat capacity, but the volume does not increase at all. The same volume brings better performance, and the compactness is vividly reflected.Liquid metal will not leak, not easy to evaporate, will not deteriorate, safe operation, long service life.Due to the built-in electromagnetic pump in the heat dissipation pipeline, the pressure gradient is generated by the electromagnetic force to push the liquid forward without any noise, so that users can enjoy the silent radiator.The alloy of gallium metal is used as the heat conducting agent of radiator, with low melting point, non-toxic and harmless, fast heat absorption and high boiling point.Liquid metal cooling technology can not only be applied toCPUcooling, its core technology can be extended to more aspects, including the instrument industry, steel manufacturing, solar energy capture, national defense, etc. Due to the wide application of various kinds of chips and optoelectronic devices, the corresponding cooling technology has a huge market demand.According to the data, the world market for manufacturing components such as fans and fins used in computer cpus, for example, is about $5 billion to $10 billion a year. With the increasing power consumption, the price of chipcoolingsolutions has also increased dramatically, and the corresponding market demand has also increased. This undoubtedly provides the broad development space for the liquid metal heat dissipation technology.

November 1, 2003 Daniel Blazej, Ph.D.Articles, Design, Materials, Compounds, Adhesives, Substrates, TIMsThermal Interface Materials, TIMIt doesn’t take long for an electronics assembler to realize that a thermal interface material (TIM) is essential when two or more solid surfaces are in the heat path. Standard machined surfaces are rough and wavy, leading to relatively few actual contact points between surfaces. The insulating air gaps created by multiple voids of “contacting” hard surfaces are simply too large a thermal barrier for even modest power applications. The first tactic in overcoming this barrier is to fill the voids and eliminate air by introducing a third material to the heat path that is fluidic and wets the surfaces. For more demanding thermal applications, the second tactic is to use a composite TIM containing fillers that enhance the conduction process of the third material. Yovanovich et al. have calculated that simply replacing air with grease can reduce the thermal resistance by a factor of five or so (depending on the surfaces and contact pressure). As shown in Figure 1, a thermal interface material essentially changes the thermal path between rough-surfaced solids from conduction through point contacts and air to conduction entirely through solids.Figure 1a. Conduction through point contacts and air between hard surfaces.Figure 1b. Conduction through TIM filling gaps.An important property of any TIM is its thermal conductivity, kTIM. Unfilled polymers have a thermal conductivity of about 0.1 W/mK. All modern TIMs are composites containing particulate fillers that push thermal conductivity up to the 7 W/mK range. Inorganic particulate fillers include aluminum oxide, magnesium oxide, aluminum nitride, boron nitride, and diamond powder. Metal fillers, notably silver, are also used. Unfortunately, high thermal conductivity alone is not enough to guarantee optimal system performance, as we will show later. In the descriptions of specific material classes, we will characterize performance with thermal resistance (normalized to a unit area on one square cm) that has units Kcm2/W, obtained from a one-dimensional heat flow calculation. In this way, we can account for the interfacial thickness. The specific value in any given application is highly dependent on the contact surfaces and pressures applied. Nevertheless, the ranges provided are representative of each material class. (Note: Many suppliers report resistance values in the mixed unit of Kin2/W. These need to be multiplied by 6.45 to match the units in this paper.)In addition to thermal performance, TIMs are selected on several other critical criteria as well. Ease of use in assembly and rework are important in high-end applications, as is long-term stability (reliability). The manufacturing process flow often dictates the material selection. In many cases, for example, the TIM is attached to a heat sink in one location while final module assembly occurs in another. Elastomeric pads were developed as an alternative to early grease solutions, largely for the manufacturing advantages they offered. Phase change materials emerged as a technology that captured the thermal performance advantage of grease and combined it with the assembly ease of a solid pad. Often overlooked in the TIM selection process are adhesives and solders. Both offer the unique advantage of secure mechanical bonding, eliminating the need for clamping hardware that the greases, pads, and phase change materials require.

uid metal is called a gallium-indium alloy.Gallium alloy materials with different melting points are formed by adding other elements to the "liquid metal material-gallium".Are Gallium Alloy Liquid Metal Materials Safe?Gallium ions are toxic. If taken in excess, it can have adverse effects on the human body. For example, short-term exposure to large doses of gallium chloride can cause throat inflammation and chest pain, and severe cases may cause adverse reactions such as partial paralysis.However, elemental gallium and gallium alloys are non-toxic, and liquid metals are gallium alloy materials. Liquid metal has a boiling point of up to 2000 ° C, and its physical and chemical properties are very stable, which means that it will not be volatile in the air like mercury, so it will not directly harm people.In addition, gallium is also used in some medical diagnostic processes, such as tumors, anti-osteoporosis, and immunosuppression. In some medical devices and medical materials, gallium is also used, for example, as a dental filling material, a thermometer and the like.Before using a variety of materials, you must fully understand the properties of the material itself and use the correct method.Application of liquid metal batteriesA liquid metal battery is composed of two liquid metal electrodes and a molten salt electrolyte. The positive electrode material is usually a transition metal element or alloy such as tin, and the negative electrode material is usually an alkali metal or alkaline earth metal element or alloy. When the battery is discharged, the electrons lost by the negative metal material work on the external circuit, and the cations generated by the lost electrons move to the vicinity of the positive electrode of the battery through the molten salt, a reduction reaction occurs, and a new alloy is formed with the positive metal. When the battery is charging, the above process is reversed.

Back to the top